Chapter 17

17.4

We can find the expectation of the number of hits per square from the table by calculating $(0 * 229+1 * 211+2 * 93+3 * 35+4 * 7+7 * 1) / 576=0.93$

Since we are modeling a Poisson distribution, we set u to 0.93 giving
$\mathrm{p}(\mathrm{k})=0.93^{\wedge} \mathrm{k} * \exp (-.93) / \mathrm{k}!=.93^{\wedge} \mathrm{k} * 0.394 / \mathrm{k}!$
We can make the following table where the left column is the value calculated from the above equation, and the right column is the probability of a square receiving k hits estimated by the original data. We get

Number of hits	Poisson	Original Data
0	0.394	0.397
1	0.366	0.366
2	0.170	0.162
3	0.053	0.061
4	0.012	0.012
5	0.002	0
6	0.0003	0
7	0.000047	0.0017

17.6
a)

We estimate the mean u as the sum of the x 's $/ \mathrm{n}$, giving 228377.2/5732 $=39.84$
The variance can be estimated by the sum of the $\mathrm{x}^{\wedge} 2 \mathrm{~s}$ divided by N less the estimated mean squared.
$9124064 / 5732-39.84^{\wedge} 2=1591.8-1587.2=4.57$
b)

From the histogram, 38.5 to 42.5 represents four bins of about $.18, .19, .16$, and .12 .
Adding this gives about . 65 .

